• Welcome to Smashboards, the world's largest Super Smash Brothers community! Over 250,000 Smash Bros. fans from around the world have come to discuss these great games in over 19 million posts!

    You are currently viewing our boards as a visitor. Click here to sign up right now and start on your path in the Smash community!

Rule #2: Never listen to Fino +1

Sky Pirate

The best defense is a lot of frigging healing
Joined
Mar 10, 2009
Messages
3,660
Location
Elgin, Texas
NNID
SkyPirateCoud
3DS FC
1590-4884-8497
My favorite is Hilt. :p

Now stop arguing and eat your freaking vegetables.
 

Sky Pirate

The best defense is a lot of frigging healing
Joined
Mar 10, 2009
Messages
3,660
Location
Elgin, Texas
NNID
SkyPirateCoud
3DS FC
1590-4884-8497
I don't even know what to say, Squid. I laughed, I cried, I found you an image of a homeless person...



We should have an award topic just so you can get an award for your posting.
 

DtJ SquidBurrMoneyBurr

Smash Champion
Joined
Oct 6, 2009
Messages
2,240
Location
Terre Haute, Indiana
New Solar Sheet Captures 90 Percent of Sunlight



Efficiencies should get a healthy boost from capturing a boarder range of wavelengths

Traditionally, solar powered devices suffer from a two-fold problem. First, they have difficulty converting the light they capture to electricity. Second, they only capture a small band of wavelengths out of the wide range of wavelengths found in sunlight striking the Earth. Improving in either area can offer gains to the net power output (and efficiency) of a solar cell.

Researchers at the University of Missouri are claiming a breakthrough in the second category. They claim [press release] to have developed a device that can capture 90 percent of sunlight, versus the 20 percent that current photovoltaic (PV) panels capture.

To capture the wider range of wavelengths, Patrick Pinhero, associate professor of chemical engineering, used a special thin, moldable sheet of small antennas called nantenna. The resulting material converts heat to electricity and can be used both for industrial heat recycling and for solar designs. In solar designs it is capable of collecting both optical (visible) sunlight and the near infrared band sunlight that most cells miss.

Professor Pinhero collaborated with researchers at the Idaho National Laboratory and Garrett Moddel, an electrical engineering professor at the University of Colorado to develop a complete material with electronic devices capable of harvesting the heat and light collected by the nantenna.

Professor Pinhero is working to port the resulting device to a mass-producable design. He's currently securing U.S. Department of Energy funding and money from private investors to accomplish this. To that end, he's enlisted the help of Dennis Slafer of MicroContinuum, Inc., of Cambridge, Mass., a solar power and alternative energy firm.

"Our overall goal is to collect and utilize as much solar energy as is theoretically possible and bring it to the commercial market in an inexpensive package that is accessible to everyone," Professor Pinhero states. "If successful, this product will put us orders of magnitudes ahead of the current solar energy technologies we have available to us today."

You can't fault Professor Pinhero for ambition. He says that within five years he should be able to deliver a finished material that complements traditional PV panel designs in rooftop installations, solar power plant installations, or rooftop car panels. This material would bump up the range of collected light, and by proxy bump up the cell's net efficiency and power output.

The instructor expects to create a broad range of commercial spinoffs based on the technology. The spinoffs would be infrared (IR) detection based products, including contraband-identifying devices for airports and the military, optical computing, and infrared line-of-sight telecommunications.

This is amazing!
 

Asa

Smash Hero
Joined
Jun 2, 2008
Messages
6,765
Location
Hawaii
New Solar Sheet Captures 90 Percent of Sunlight



Efficiencies should get a healthy boost from capturing a boarder range of wavelengths

Traditionally, solar powered devices suffer from a two-fold problem. First, they have difficulty converting the light they capture to electricity. Second, they only capture a small band of wavelengths out of the wide range of wavelengths found in sunlight striking the Earth. Improving in either area can offer gains to the net power output (and efficiency) of a solar cell.

Researchers at the University of Missouri are claiming a breakthrough in the second category. They claim [press release] to have developed a device that can capture 90 percent of sunlight, versus the 20 percent that current photovoltaic (PV) panels capture.

To capture the wider range of wavelengths, Patrick Pinhero, associate professor of chemical engineering, used a special thin, moldable sheet of small antennas called nantenna. The resulting material converts heat to electricity and can be used both for industrial heat recycling and for solar designs. In solar designs it is capable of collecting both optical (visible) sunlight and the near infrared band sunlight that most cells miss.

Professor Pinhero collaborated with researchers at the Idaho National Laboratory and Garrett Moddel, an electrical engineering professor at the University of Colorado to develop a complete material with electronic devices capable of harvesting the heat and light collected by the nantenna.

Professor Pinhero is working to port the resulting device to a mass-producable design. He's currently securing U.S. Department of Energy funding and money from private investors to accomplish this. To that end, he's enlisted the help of Dennis Slafer of MicroContinuum, Inc., of Cambridge, Mass., a solar power and alternative energy firm.

"Our overall goal is to collect and utilize as much solar energy as is theoretically possible and bring it to the commercial market in an inexpensive package that is accessible to everyone," Professor Pinhero states. "If successful, this product will put us orders of magnitudes ahead of the current solar energy technologies we have available to us today."

You can't fault Professor Pinhero for ambition. He says that within five years he should be able to deliver a finished material that complements traditional PV panel designs in rooftop installations, solar power plant installations, or rooftop car panels. This material would bump up the range of collected light, and by proxy bump up the cell's net efficiency and power output.

The instructor expects to create a broad range of commercial spinoffs based on the technology. The spinoffs would be infrared (IR) detection based products, including contraband-identifying devices for airports and the military, optical computing, and infrared line-of-sight telecommunications.

This is amazing!
This is the squid I know and love!
 

Sky Pirate

The best defense is a lot of frigging healing
Joined
Mar 10, 2009
Messages
3,660
Location
Elgin, Texas
NNID
SkyPirateCoud
3DS FC
1590-4884-8497
This is Squid Light.
Mattshield Squid teaches us how to make things we use every day, like gummy bears, mittens, and burqas.
 

Jiom

Smash Journeyman
Joined
Sep 18, 2008
Messages
474
Lol guys. There's a Melee stream live right now and I joined just to watch and you'll never believe what I found.....

Renth!
ahahaha that'll make me sleep better knowing oli boards successfully captured renth and know which routes to catch him on.

:phone:
 
Top Bottom